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Abstract

An approximate analytical solution for stresses and displacements in thin rectangular orthotropic or isotropic
strips subjected to tension by longitudinal line loads is presented. It is assumed that changes in the transverse
direction of the strip middle surface are small, in comparison to the changes in the longitudinal direction, and can

be ignored in the shear strain±displacement relation. The solution is given for linearly and uniformly distributed line
loads in the longitudinal direction, generally (symmetrically) distributed in the transverse direction. Some simple
examples are analyzed, and compared to exact solutions of the plane theory of elasticity and the ®nite element

analysis. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of the stress estimation in thin rectangular strips of isotropic or orthotropic materials

subjected to tension by line loads can be considered, in general, by methods of the plane theory of

elasticity (Papkovich, 1939; Kurdyumov et al., 1963). Meanwhile, some simple solutions can be obtained

for a number of simple cases, only. A typical example is an isotropic strip loaded by line loads along its

longitudinal edges presented by the Fourier series of cosine or sine mode shapes. The solution by cosine

load modes assume that the longitudinal normal stress and transverse displacement vanish at the strip

ends (Filon, 1903; Shade, 1951; Abdel-Sayed, 1969), while sine load modes assume that the shear stress

and longitudinal displacement vanish at the strip ends (RibieÁ re, 1898; von Karman, 1924; Beschkin,
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1937±38; Fukuda, 1963). The ®rst solution corresponds to the ¯anges of an antisymmetrically loaded
multispan thin-walled girder, while the second one corresponds to the symmetrically loaded multispan
girder. For the orthotropic strip the solution would be only more complicated due to the de®nition of
the state of stress for orthotropic materials (Kurdyumov et al., 1963; Abdel-Sayed, 1969; SenjanovicÂ and
Fan, 1992).

Some simple approximate solutions based on assumptions about stresses and strains for isotropic
strips can be found in the literature. There, some acceptable results for the maximum longitudinal stress
are obtained; if the length of the strip is not too small compared to the breadth of the strip (Boytzov
and Paliy, 1979; Pavazza and Plazibat, 1997). Such solutions can be very suitable due to their simplicity,
especially in the early design stage of structures (in civil and marine engineering, etc.).

In this paper, a simple approximate solution is investigated for the thin rectangular orthotropic strips.
A general disposition of the longitudinal loads, within the longitudinal edges of the strip, is assumed.
Loading along the longitudinal edges, and along the central longitudinal section will be only special
cases; as well as the solution for isotropic strips. The results are proved using exact solutions of the
plane theory of elasticity and the ®nite element method.

2. Basic relation

A thin rectangular strip of length l and breadth b, thickness t, is loaded symmetrically, with respect to
the central longitudinal axes x, along longitudinal sections, at y=2 c, by line loads T=T(x ), in the
strip middle surface (Fig. 1).

A state of plane stress is assumed, where for orthotropic materials:

Ex

Ey
� nx

ny
, �1�

where Ex and Ey are the moduli of elasticity, in the longitudinal and transverse direction, respectively; nx
and ny are the Poisson's ratios, with respect to tension in longitudinal and transverse direction,
respectively;

Ex � 1

Ex
�sx ÿ nxsy�, Ey � 1

Ey
�sy ÿ nysx�, gxy �

txy
G

, �2�

Fig. 1. Thin rectangular strip subjected to tension by line loads.
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where Ex=Ex (x, y ) and Ey=Ey (x, y ) are strains in the longitudinal and transverse direction, respectively;
sx=sx (x, y ) and sy=sy (x, y ) are the normal stresses in the longitudinal and transverse direction,
respectively; gxy=gyx=gxy (x, y ) is the shear strain; txy=tyx=txy (x, y ) is the shear stress; G is the shear
modulus.

It will be assumed that changes of middle surface in the transverse direction are small compared to
the changes in the longitudinal direction, and can be ignored in the shear strain±displacement relation.

The strain±displacement relations may then be written as follows

Ex � @u

@x
, Ey � @v

@y
, gxy �

@u

@y
, �3�

where u=u(x, y ) and v=v(x, y ) are the displacements, in the longitudinal and transverse direction,
respectively. Consequently, the compatibility condition takes the following simple form

@Ex
@y
� @gxy

@x
: �4�

Referring to (2), the following equation may then be obtained

@sx
@y
ÿ nx

@sy
@y
� Ex

G
� @txy

@x
: �5�

The equilibrium conditions may be obtained for a portion of the strip (Fig. 2), as follows�
y�

@sx
@x

dy� q�x
t
ÿ tyx � 0;

�
y�

@txy
@x

dyÿ sy � 0, �6�

where

q�x � q�x�x, y� �
�
T j ÿT� yÿ c�0 �0RyRb�,
ÿT j �T� y� c�0 �0ryrÿ b�, �7�

where y�=bÿy (ÿy�=b+y ) is the coordinate from the longitudinal edge, where sy=0; the vertical lines
denotes (Clebshe): for y R c ( yrÿc ) the part left of the line, for yr c ( y R ÿc ) the line must be
deleted. The total line load is

qx � 2q�x�x, b� � 2T: �8�

Fig. 2. Equilibrium of a portion of the strip.
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Referring to (6), one may write

tyx � txy �
�
y�

@sx
@x

dy� J �
qx
t
, �9�

where

J � � J �� y� � q�x
qx
�
8<:

1
2 j ÿ1

2 � yÿ c�0 �0RyRb�,
ÿ1

2 j �1
2� y� c�0 �0ryrÿ b�:

�10�

The normal force N=N(x ) can be de®ned as follows�
A

sx dA � N, �11�

where A is the strip cross-section area: A=2bt. Then, from the equilibrium

dN

dx
� ÿqx: �12�

According to (3) and (2), the displacement in the longitudinal direction can be expressed as follows

u � uC � 1

G

� y

0

txy dy, �13�

where uC=uC (x ) is an integration constant, that is the displacement of the cross-section centroid (the
origin of the y coordinate). Referring to (3), the longitudinal strain can then be written as

Ex � duC
dx
� 1

G

� y

0

@txy
@x

dy: �14�

Referring to (2) and (14), the longitudinal normal stress may be expressed as

sx � Ex
duC
dx
� Ex

G

� y

0

@txy
@x

dy� nxsy: �15�

The transverse normal stress, given by (6), may be written as

sy � sy0 ÿ
� y

0

@txy
@x

dy, sy0 �
�
b

@txy
@x

dy: �16�

The longitudinal normal stress may then be rewritten as follows

sx � Ex
duC
dx
� nxsy0 � Ex

G

� y

0

@txy
@x

dy: �17�

Referring to (3) and (2), the transverse displacement is de®ned by

v � 1

Ey

� y

0

�sy ÿ nysx�dy, �18�

or by employing (16) and (17)
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v � 1

Ey

(�
�1ÿ nxny�sy0 ÿ nyEx

duC
dx

�
yÿ

�
1� ny

�
Ex

G
ÿ nx

��� y

0

� y

0

@txy
@x

dy dy

)
: �19�

3. Uniformly distributed loads

If the shear stress is given as

txy � txy� y�, �20�
then taking into account (16)

sy � 0: �21�
From (17) one obtains

sx � Ex
duC
dx

�22�

and from (11)

ExA
duC
dx
� N: �23�

Thus,

sx � N

A
: �24�

Taking into account (12), the following equation may be written

ExA
d2uC
dx2
� ÿqx: �25�

By substituting (24) into (9), taking into account (12), the shear stress may be expressed as follows

txy �
�
J � ÿ A�

A

�
qx
t
, �26�

where

A� �
� �bÿ y�t �0RyRb�,
ÿ�b� y�t �0ryrÿ b�: �27�

It follows, according to (18), that

qx � const: �28�
From (8), it follows that the line loads must be distributed uniformly (T=const).

The solution given by (21), (24) and (26) satis®es the compatibility condition, given by (5) (for
uniformly distributed loads).

By substituting (26) into (13), the longitudinal displacement is given by
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u � uC � 1

G

�� y

0

J � dyÿ 1

A

� y

0

A� dy

�
qx
t
, �29�

where

� y

0

A� dy �

8>><>>:
ty

2
�2bÿ y� �0RyRb�,

ÿ ty
2
�2b� y� �0ryrÿ b�;

�30�

� y

0

J � dy �
(

1
2y j ÿ1

2� yÿ c� �0RyRb�,
ÿ1

2y j � 1
2� y� c� �0ryrÿ b�: �31�

The transverse displacement, after substitution of (21), (24) and (26) into (19), reads

v � ÿny
N

AEy
y: �32�

4. Linearly distributed loads

If the shear stress is given by (26), but qx$const., then from (16)

sy � sy0 ÿ 1

t

�� y

0

J � dyÿ 1

A

� y

0

A� dy

�
dqx
dx

, �33�

where

sy0 � 1

t

��
b

J � dyÿ 1

A

�
b

A�dy
�

dqx
dx
� b

4t
�2jÿ 1�dqx

dx
, �34�

where j=(c/b ). From (17) one obtains

sx � Ex
duC
dx
� nxsy0 � 1

t

�
Ex

G
ÿ nx

��� y

0

J � dyÿ 1

A

� y

0

A� dy

�
dqx
dx

�35�

and from (11)

ExA
duC
dx
ÿ Ex

G
Ak

dqx
dx
� N, �36�

where

k � G

Ex

�
Ex

G
ÿ nx

�
Kÿ nx

Gb

4Ext
�2jÿ 1�, �37�

where

K � 1

At

�
1

A

�
A

�� y

0

A� dy

�
dAÿ

�
A

�� y

0

J � dy

�
dA

�
� ÿ b

12t
�1ÿ 3�1ÿ j�2�: �38�
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Finally, one may write

sx � N

A
�
�
Ex

G
ÿ nx

�
K

dqx
dx
� 1

t

�
Ex

G
ÿ nx

��� y

0

J � dyÿ 1

A

� y

0

A� dy

�
dqx
dx
: �39�

The stresses given by (26), for qx$const., (33), (34) and (39) satisfy the compatibility condition, given
by (5). The equilibrium condition, given by (9), will be satis®ed if

dqx
dx
� const: �40�

Then, taking into account (8), the line loads T must be distributed linearly. Di�erentiating (36) one
obtains (25), where qx is now a linear function.
The longitudinal displacement is given by (29), where qx is a linear function.
The displacement uC can be expressed as

uC � up � ua, �41�

where

dup

dx
� N

EA
,

d2up

dx2
� ÿ qx

EA
�42�

and

dua
dx
� k

G

dqx
dx
: �43�

The displacement up corresponds formally to the displacement uC when qx=const. The displacement ua
is an additional displacement, which can be de®ned as

ua � k
G
qx � C, �44�

where C is a constant of integration, or a displacement of the strip as a rigid body. The displacement
given by (29) may then be rewritten as follows

u � up � k
G
qx � C� 1

G

�� y

0

J � dyÿ 1

A

� y

0

A� dy

�
qx
t
: �45�

The transverse displacement, after substitution of (26), (34) and (36) into (19), reads

v � 1

Ey

(
ÿ ny

N

A
yÿ ly

dqx
dx
ÿ 1

t

�
1� ny

�
Ex

G
ÿ nx

���� y

0

� y

0

J � dyÿ 1

A

� y

0

� y

0

A� dx

�)
dqx
dx

, �46�

where

l � ny
�
Ex

G
ÿ nx

�
Kÿ b

4t
�2jÿ 1� �47�

and
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� y

0

� y

0

J � dy dy �
8<:

1
4y

2 j ÿ1
4� yÿ c�2 �0RyRb�,

ÿ1
4y

2 j � 1
4� y� c�2 �0ryrÿ b�;

�48�

� y

0

� y

0

A� dy dy �

8>>><>>>:
ty2

6
�3bÿ y� �0RyRb�,

ÿ ty
2

6
�3b� y� �0ryrÿ b�:

�49�

The stresses, ®nally can be written as follow (0R ZR b )

txy � �Z j ÿ�Zÿ j�0�qx
2t
, �50�

sx � N

A
ÿ b

12lt

�
Ex

G
ÿ nx

�
�1ÿ 3�1ÿ j�2 ÿ 3Z2 j �6�Zÿ j��dqx

dx
, �51�

sy � b

4lt
�2jÿ 1ÿ Z2 j �2�Zÿ j��dqx

dx
, �52�

where x=(x/l ) and Z=( y/b ). The displacements may be written as (0R ZR b )

u � up � Cÿ b

12Eyt

��
Ex

G
ÿ nx

�
�1ÿ 3�1ÿ j�2� ÿ 3nx�1ÿ 2j� ÿ 3

Ex

G
�Z2 j ÿ2�Zÿ j��

�
qx, �53�

v � ÿny
N

2Eyt
Z� b2

12Eylt

��
3�2jÿ 1� ÿ ny

�
Ex

G
ÿ nx

�
�3j2 ÿ 6j� 2�

�
Z

ÿ
�
1� ny

�
Ex

G
ÿ nx

��
�Z3 j ÿ3�Zÿ j�2�

�
dqx
dx
:

�54�

For j=1, one obtains the stresses and displacements for the strip loaded along its longitudinal edges (0
R ZR b ):

txy � Z
qx
2t
, �55�

sx � N

A
ÿ b

12lt

�
Ex

G
ÿ nx

�
�1ÿ 3Z2�dqx

dx
, �56�

sy � b

4lt
�1ÿ Z2�dqx

dx
, �57�
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u � up � Cÿ b

12Ext

�
Ex

G
� 2nx ÿ 3

Ex

G
Z2
�
qx, �58�

v � ÿny
N

2Eyt
Z� b2

12Eylt

��
3� ny

�
Ex

G
ÿ nx

��
Zÿ

�
1� ny

�
Ex

G
ÿ nx

��
Z3
�

dqx
dx
: �59�

For isotropic materials, when

Ex � Ey � E, nx � ny � n,
E

G
� 2�1� v�, �60�

the longitudinal normal stress, given by (56), takes the form

sx � N

A
ÿ �2� n� b

12lt
�1ÿ 3�1ÿ Z�2�dqx

dx
, �61�

where the stress depends on materials. On the other hand, it is well known from the plane theory of
elasticity that in this case the stresses should be independent of materials. Hence, the stress (56) will be
corrected, as follows

sx � N

A
ÿ b

12lt

�
Ex

G
ÿ 2nx

�
�1ÿ 3Z2�dqx

dx
: �62�

Taking into account (60), for isotropic materials then one has

sx � N

A
ÿ b

6lt
�1ÿ 3Z2�dqx

dx
: �63�

The shear stress and the transverse normal stress are obtained independent of materials already, given
by (55) and (57). The displacements may be taken as (58) and (59). For isotropic materials, taking into
account (60), then one has

u � up � Cÿ b

6Et
�1� 2nÿ 3�1� n�Z2�qx, �64�

v � ÿn
N

2Et
Z� b2

12Elt
f�3� n�2� n��Zÿ �1� n�2� n��Z3gdqx

dx
: �65�

Now, the general solution for longitudinal normal stress given by (51) should be corrected, since the
stress (62) should be a special case of such general solution. Therefore, a function C(Z ) in (51) will be
introduced:

sx � N

A
ÿ b

12lt

�
Ex

G
ÿ nx

�
�1ÿ 3�1ÿ j�2 ÿ 3Z2 �C j �6�Zÿ j��dqx

dx
: �66�

Then, the function C may be obtained by equating (66), for j=1, and (62):

C � ÿ�1ÿ 3Z2� nx
Ex

G
ÿ nx

: �67�

For isotropic materials one has

R. Pavazza / International Journal of Solids and Structures 37 (2000) 4353±4375 4361



sx � N

A
ÿ b

12lt
�2� n��1ÿ 3�1ÿ j�2 ÿ 3Z2 �C j �6�Zÿ j��dqx

dx
, �68�

where

C � ÿ�1ÿ 3Z2� n
2� n

: �69�

For j=0, the case of loading along the central longitudinal section, the stress (66), taking into account
(67), becomes

sx � N

A
ÿ b

12lt

��
Ex

G
ÿ 2nx

�
�1ÿ 3Z2� ÿ 3

�
Ex

G
ÿ nx

�
�1ÿ 2Z�

�
dqx
dx
: �70�

The other components may be obtained from (50), (52)±(54):

txy � ÿ�1ÿ Z�qx
2t
, �71�

sy � ÿ b

4lt
�1ÿ Z�2 dqx

dx
, �72�

u � up � Cÿ b

12Ext

�
Ex

G
ÿ nx ÿ 3

Ex

G
�1ÿ Z�2

�
qx, �73�

v � ÿny
N

Eyt
Zÿ b2

12Eylt

(�
3� 2ny

�
Ex

G
ÿ nx

��
Z�

�
1� ny

�
Ey

G
ÿ nx

��
�3ÿ Z�Z2

)
dqx
dx

�74�

where qx=T. For isotropic materials one has

sx � N

A
ÿ b

12lt
�2� n�

�
�1ÿ 3Z2� 2

2� n
ÿ 3�1ÿ 2Z�

�
dqx
dx

, �75�

txy � ÿ�1ÿ Z�qx
2t
, �76�

sy � ÿ b

4lt
�1ÿ Z�2 dqx

dx
, �77�

u � up � Cÿ b

12Et
�2� nÿ 6�1� n��1ÿ Z2��qx, �78�

v � ÿn
N

Et
Zÿ b2

12Elt
f�3� 2n�2� n��Z� �1� n�2� n���3ÿ Z�Z2gdqx

dx
: �79�

The corrected longitudinal normal stresses satisfy the equilibrium conditions (9) and (12).
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5. Boundary conditions

Unknown values N and up are average values, and can be obtained from boundary conditions, as
follows

up � ~up, N � ~N, �80�
where uÄp and NÄ are given values, at a cross-section.
Uniformly distributed loads

� up � 0 �N6�0�: �81�
Then from obtained expressions for stresses and displacements:

sy � 0, txy 6�0, sx 6�0, u 6�0, v 6�0: �82�

� N � 0 �up 6�0�: �83�

sx � 0, sy � 0, v � 0, txy 6�0, u 6�0: �84�
Linearly distributed loadsÐfor qx=0

� up � 0 �N6�0�: �85�

txy � 0, u � 0; sx 6�0, sy 6�0, v 6�0: �86�

� N � 0 �up 6�0�: �87�

txy � 0, s�x 6�0, sy 6�0, u 6�0, v 6�0: �88�
Linearly distributed loadsÐfor qx$0

� up � 0 �N6�0�: �89�

txy 6�0, sx 6�0, sy 6�0, u 6�0, v 6�0: �90�

� N � 0 �up 6�0�: �91�

txy 6�0, s�x 6�0, sy 6�0, u 6�0, v 6�0: �92�
Here (�) denotes that the main vector of sx is equal to zero. The condition given by (83) and (84)
corresponds to the `transverse displacement restrained support' (in the plane of antisymmetry of an
antisymmetrically loaded multispan girderÐShade, 1951). The condition given by (85) and (86)
corresponds to the `longitudinal displacement restrained support' (in the plane of symmetry of a
symmetrically loaded multispan girder, inside a spanÐvon Karman, 1924). The condition given by (91)
and (92) corresponds to the condition (83) and (84) in an average way; the in¯uence of self-equilibrated
longitudinal forces on the rest of the strip (the main vector of the longitudinal normal stress sx is equal
to zero) should be discussed in accordance with the Saint Venant's principle. The conditions (81) and
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(82) and (89) and (90) can be compared, in an average way, to the condition (85) and (86). The
condition given by (87) and (88) corresponds in an average way to the so-called free±free endÐfree of
the longitudinal normal stress, free of the shear stress (as it is well known, this condition does not admit
trigonometric stress-functions in the exact solutionÐShade, 1951; Bhattacharyya and Vendham, 1987).

6. Examples

6.1. Example 1

A strip loaded by linearly distributed line loads T=T(1)x along its longitudinal edges: (a) up=0 at
x=0 and N=0 at x=1; (b) up=0 at x=0 and at x=1, respectively.

(a) The boundary conditions are given by (85) and (86) for x=0 and by (91) and (92) for x=1.
Determination of the function N and up is a statically determinate problem:

N � qx�1�l
2
�1ÿ x2�, up � qx�1�l2

6ExA
x�3ÿ x2�, qx � qx�1�x, qx�1� � 2T�1�; �93�

for isotropic materials Ex=E. The stresses and displacements are given by (55), (57)±(62); for
isotropic materials by (55), (57) and (63)±(65).

The extreme longitudinal normal stresses, at Z=0 and Z=1, respectively, can be expressed as follows

sx�0� � N

A
c�0�, sx�1� � N

A
c�1�, �94�

where

c�0� � 1ÿ 1

3

�
Ex

G
ÿ 2nx

��
b

l

�2
1

1ÿ x2
, c�1� � 1� 2

3

�
Ex

G
ÿ 2nx

��
b

l

�2
1

1ÿ x2
: �95�

For isotropic materials:

c�0� � 1ÿ 2

3

�
b

l

�2
1

1ÿ x2
, c�1� � 1� 4

3

�
b

l

�2
1

1ÿ x2
: �96�

The solution corresponds, in an average way, to the exact solution for the ¯anges of antisymmetrically
vertically loaded multispan thin-walled girders, with close (Fig. 3a) or open cross-sections (Fig. 3b). For
x=0, the solution will agree with the exact solution, for l/b not too small (Saint Venant's principle). The
solution may also be used in the analysis of isolated simple supported thin-walled girdersÐwhere
boundary conditions (at supports) are given (by the plane theory of elasticity) also in an average way
(Filin, 1978).

(b) The boundary conditions are given by (85) and (86) for x=0 and by (89) and (90) for x=1;
determination of the functions N and up is a statically indeterminate problem:

N � qx�1�l
6
�1ÿ 3x2�, up � qx�1�l2

6ExA
x�1ÿ x2�: �97�

In this case:
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c�0� � 1ÿ
�
Ex

G
ÿ 2nx

��
b

l

�2
1

1ÿ 3x2
, c�1� � 1� 2

�
Ex

G
ÿ 2nx

��
b

l

�2
1

1ÿ 3x2
: �98�

For isotropic materials:

c�0� � 1ÿ 2

�
b

l

�2
1

1ÿ 3x2
, c�1� � 1� 4

�
b

l

�2
1

1ÿ 3x2
: �99�

The solution corresponds, in an average way, to the exact solution for the ¯anges of symmetrically
vertically loaded multispan thin-walled girders (symmetrically with respect to a midspan) with close
(Fig. 3a) or open cross-sections (Fig. 3b). For x=0, the solution will agree with the exact solution, for l/
b not too small. The solution may also be used in the analysis of isolated girders with clamped endsÐ
where boundary conditions (at supports) are given (by the plan theory of elasticity) also in an average
way (Filin, 1978).

6.2. Example 2

A strip loaded by linearly distributed line loads T=T(1)x along its central longitudinal section; up=0
at x=0 and N=0 at x=1.

The load and boundary conditions are as in Example 1(a): N, up and qx given by (93), where
qx (1)=T(1).

The stresses and displacements are given by (70)±(74); for isotropic materials by (75)±(79). The
extreme longitudinal normal stresses can be obtained by (94), where

c�0� � 1� 2

3

�
Ex

G
ÿ nx

2

��
b

l

�2
1

1ÿ x2
, c�1� � 1ÿ 1

3

�
Ex

G
ÿ nx

2

��
b

l

�2
1

1ÿ x2
; �100�

for isotropic materials:

Fig. 3. Cross-sections of thin-walled girders.
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c�0� � 1� 2

3

�
2� 3

2
n
��

b

l

�2
1

1ÿ x2
, c�1� � 1ÿ 1

3

�
2� 3

2
n
��

b

l

�2
1

1ÿ x2
: �101�

The extreme transverse normal stress can be expressed as follows

sy�0� � ÿN
A
w�0�, �102�

where

w�0� �
�
b

l

�2
1

1ÿ x2
: �103�

The solution corresponds, in an average way, to the exact solution for the ¯anges of antisymmetrically
vertically loaded multispan thin-walled girders with open cross-sections (Fig. 3c and d).

6.3. Example 3

A strip loaded by linearly distributed line loads T=T(1)(x ) along the longitudinal sections (0R Z R 1,
ÿ1R ZR 0): (a) up=0 at x=0 and N=0 at x=1; (b) up=0 at x=0 and at x=1, respectively.

(b) The loads and boundary conditions are given as in Example 1(a); N, up and qx are given by (93).

The stresses and displacements are given by (50), (52)±(54), (66) and (67); for isotropic materials by (50),
(52)±(54), (68) and (69). The extreme longitudinal stress, at Z=j, may be obtained by (94), where

c�j� � 1� 1

3

�
3

�
Ex

G
ÿ nx

�
�1ÿ j�2 ÿ

�
Ex

G
ÿ 2nx

�
�1ÿ 3j2�

��
b

l

�2
1

1ÿ x2
, �104�

and

c�j� � 1� 1

3
�3�2� n��1ÿ j�2 ÿ 2�1ÿ 3j2��

�
b

l

�2
1

1ÿ x2
: �105�

The solution corresponds, in an average way, to the exact solution for the ¯anges of antisymmetrically
vertically loaded multispan thin-walled girders, with closed open cross-sections (Fig. 3e) or open cross-
sections (Fig. 3f).

(b) The loads and boundary conditions as in Example 1(b); N, up and qx given by (97).
In this case:

c�j� � 1�
�
3

�
Ex

G
ÿ nx

�
�1ÿ j�2 ÿ

�
Ex

G
ÿ 2nx

�
�1ÿ 3j2�

��
b

l

�2
1

1ÿ 3x2
, �106�

and

c�j� � 1� �3�2� n��1ÿ j�2 ÿ 2�1ÿ 3j2��
�
b

l

�2
1

1ÿ 3x2
: �107�

The solution corresponds, in an average way, to the exact solution for the ¯anges of symmetrically
vertically loaded multispan thin-walled girders, with closed open cross-sections (Fig. 3e) or open cross-
sections (Fig. 3f). For x=0, the solution will agree with the exact solution, for l/b not too small. The
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solution can also be used in the analysis of isolated girders with clamped ends, where boundary
conditions (at supports) are given (by the plane theory of elasticity) also in an average way (Filin, 1978).

6.4. Example 4

A strip loaded by linearly distributed line loads T=T(0)(1ÿx ) along the central longitudinal section;
up=0 at x=0 and N=0 at x=1.

The boundary conditions are given by (89) and (90) for x=0 and by (87) and (88) for x=1.
Determination of the functions N and up is a statically determinate problem:

N � qx�0�l
2
�1ÿ x�2, up � qx�0�l2

6ExA
x�3ÿ x�3ÿ x��,

qx � qx�0��1ÿ x�, qx�0� � T�0�: �108�
In this case:

c�0� � 1� 2

3

�
Ex

G
ÿ nx

2

��
b

l

�2
1

�1ÿ x�2 , c�1� � 1ÿ 1

3

�
Ex

G
ÿ nx

2

��
b

l

�2
1

�1ÿ x�2 , �109�

and

c�0� � 1� 2

3

�
2� 3

2
n
��

b

l

�2
1

�1ÿ x�2 , c�1� � 1ÿ 1

3

�
2� 3

2
n
��

b

l

�2
1

�1ÿ x�2 : �110�

The solution can be used in the analysis of the ¯anges of consoles with open cross-sections (Fig. 3c and
d), where the boundary condition at x=0 is given (by the plane theory of elasticity) also in an average
way (Filin, 1978).

7. Comparison of results

The results obtained for Example 1 are compared to the results of the plane theory of elasticity. The
loads are presented by Fourier series by cosine mode shapes for Case (a), where sx=0, sy=0 and v=0,
txy$0, u$0, at x=21, and by sine mode shapes for Case (b), where txy=0 and u=0, sx$0, sy$0, v
$0, at x=21.

For Case (a) the following ratios c(1), at x=0, according to (94), can be obtained (Kurdyumov et al.,
1963):

c�1�� � p
2

X1, 3...

n

1

n2
W�n sin n

p
2X1, 3...

n

1

n3
sin n

p
2

�111�

for orthotropic materials;
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c�1� � pb
l
�

X1, 3...

n

1

n2
Wn sin n

p
2X1, 3...

n

1

n3
sin n

p
2

�112�

for isotropic materials.
For Case (b) it may be obtained:

c�1� � p
2
�

X2, 4...

n

1

n
W�n cos n

p
2X2, 4...

n

1

n2
cos n

p
2

�113�

for orthotropic materials;

c�1� � pb
l
�

X2, 4...

n

1

n
Wn cos

np
2X2, 4...

n

1

n2
cos

np
2

�114�

for isotropic materials. Here

W�n �
�g21 ÿ g22�ch un ch vn

g1 sh un ch vn ÿ g2 ch un sh vn
, Wn � 1� ch an

an � sh an
, �115�

where

un � g1np
2

, vn � g2np
2

, an � npb
l

g1 �
�����
O
G

r
�

���������������������������
1�

���������������
1ÿ 1

O2

rs
, g2 �

�����
O
G

r
�

���������������������������
1ÿ

���������������
1ÿ 1

O2

rs
,

1

O2
< 1, �116�

where

G �
�
l

b

�2
������
d1
d2

s
, O � d3���������

d1d2
p , d1 � 1

Ex
, d2 � 1

Ey
, d3 � 1

2G
ÿ nx

Ex
: �117�

The results of comparison for Case (a), for the orthotropic materials Ex=18 GPa, Ey=17 GPa, G=1.9
GPa, nx=0.118, and Ex=315 GPa, Ey=210 GPa, G= 80.77 GPa, nx=0.367, are presented in Tables 1
and 2, respectively. For Case (b) the results are presented in Tables 3 and 4, respectively. The results of
comparison for isotropic materials for Case (a) are presented in Table 5, and for Case (b) in Table 6,
respectively.

The results obtained for Example 2, for the isotropic material E= 210 GPa, n=0.3, are compared to
the results of a ®nite element analysis (FEA). In proceeding with FEA rectangular meshes containing
4050 elements (quadrilateral plane stress) and 4186 nodes, with two degrees-of-freedom (x-, y-
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Table 1

Value of c(1), at x=0, for Example 1(a) for Ex=18, Ey=17, G=1.9 GPa, nx=0.118

l/b (95) (111) n Da

2 2.540 2.318 197 8.7

3 1.684 1.650 197 2.0

4 1.385 1.378 197 0.5

5 1.246 1.245 197 0.1

6 1.171 ±

7 1.126 ±

8 1.098 ±

9 1.077 ±

10 1.062 ±

a D � j�111�ÿ�95�j�95� 100.

Table 2

Values of c(1), at x=0, for Example 1(a) for Ex=315, Ey=210, G=80.77 GPa, nx=0.367

l/b (95) (111) n Da

2 1.528 1.538 103 0.7

3 1.235 1.235 39 0.0

4 1.132 1.132 31 0.0

5 1.084 1.084 65 0.0

6 1.059 ±

7 1.043 ±

8 1.033 ±

9 1.026 ±

10 1.021 ±

a D � j�111�ÿ�95�j�95� 100.

Table 3

Value of c(1), at x=0, for Example 1(b): Ex=18, Ey=17, G=1.9 GPa, nx=0.118

l/b (98) (113) n Da

2 5.619 4.150/4.102 266/268 27

3 3.053 2.714/2.735 396/398 11

4 2.155 2.064/2.076 536/538 3.9

5 1.739 1.711/1.720 600/602 1.4

6 1.513 1.503/1.510 600/602 0.4

7 1.378 1.372/1.378 600/602 0.2

8 1.289 ±

9 1.228 ±

10 1.185 ±

a D � j�113�ÿ�98�j�98� 100.
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Table 5

Values of c(1), at x=0, for Example 1(a) for isotropic materials

l/b (96) (112) n Da

2 1.333 1.344 37 0.8

3 1.148 1.148 35 0.0

4 1.083 1.083 29 0.0

5 1.053 1.053 33 0.0

6 1.037 ±

7 1.027 ±

8 1.021 ±

9 1.017 ±

10 1.013 ±

a D � j�112�ÿ�96�j�96� 100.

Table 4

Values of c(1), at x=0, for Example 1(b): Ex=315, Ey=210, G=80.77 GPa, nx=0.367

l/b (98) (113) n Da

2 2.583 2.643/2.677 264/266 3.0

3 1.704 1.727/1.712 402/404 0.9

4 1.396 1.401/1.393 536/538 0.1

5 1.253 1.256/1.250 598/600 0.0

6 1.176 1.178/1.173 598/600 0.0

7 1.129 1.131/1.127 598/600 0.0

8 1.098 ±

9 1.078 ±

10 1.063 ±

a D � j�113�ÿ�98�j�98� 100.

Table 6

Values of c(1), at x=0, for Example 1(b) for isotropic materials

l/b (99) (114) n Da

2 2.000 2.105/2.122 448/450 5.7

3 1.444 1.432/1.444 448/450 0.5

4 1.250 1.234/1.242 448/450 1.0

5 1.160 1.147/1.154 448/450 0.8

6 1.111 ±

7 1.082 ±

8 1.063 ±

9 1.050 ±

10 1.040 ±

a D � j�114�ÿ�99�j�99� 100.
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displacements) per node, for l/b = 2, and 2700 elements and 2821 nodes, for l/b = 3, are used (Fig. 4).
The sizes of meshes correspond to one quarter of the strips. The model is also loaded along the end at
x=1, by line loads in accordance with the analytical solutions for the shear stresses, given by (76), and
longitudinal normal stresses, given by (75). The results of comparison are shown in Table 7.

For Example 3 the meshes contained (Fig. 5): 8100 elements and 8281 nodes for l/b = 1 and 5400
elements and 5551 nodes for l/b = 3/2; for l/b = 2 and l/b = 3 the meshes as for Example 2. The

Table 7

Distributions of c(0) and w(0), respectively, for Example 2: E=210 GPa, n=0.3

x/l l/b=2 l/b=3

c(0) w(0) c(0) w(0)

(101) FEA Da (103) FEA (101) FEA Da (103) FEA

0.0 1.408 1.408 0.0 0.250 0.247 1.182 1.182 0.0 0.111 0.110

0.2 1.425 1.425 0.0 0.260 0.256 1.189 1.189 0.0 0.116 0.115

0.4 1.486 1.483 0.2 0.298 0.291 1.216 1.217 0.1 0.132 0.131

0.6 1.638 1.628 0.6 0.391 0.381 1.284 1.282 0.2 0.174 0.169

0.8 2.134 2.105 1.4 0.694 0.686 1.504 1.497 0.5 0.309 0.302

a D � jFEAÿ�101�j
�101� 100.

Fig. 4. Finite element model for Example 2.

Fig. 5. Finite element model for Example 3.
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boundary conditions for Case (a) are shown in Fig. 5a, and for Case (b) in Fig. 5b. The result for Case
(a) are shown in Table 8, and for Case (b) in Table 9.

8. Concluding remarks

A novel approximate analytical method has been applied to estimate stresses and displacements in thin
rectangular orthotropic or isotropic strips subjected to tension by linearly distributed line loads. The
solution for isotropic strips is given as a special case of the solution for orthotropic strips. The solution
for uniformly distributed load can be obtained as a special case of the solution for linearly distributed
loads. The strip can be loaded generally (symmetrically) within the longitudinal edges. Loading along the
longitudinal edges and the central longitudinal section are given as special cases of the general loading.

The method is approximate due to the introduced assumptions. The reliability of the assumptions is
proved especially by Example 2, where distributions of the extreme longitudinal and transverse normal
stresses along the strip length are analyzed in comparison with the results of a ®nite element analysis.
For that case, the identical conditions are provided by loading the ®nite element model at the end cross-
section at x=1 according to the analytic solution.

Detail comparisons with the exact solutions of the plane theory of elasticity and the ®nite element
analysis show an acceptable agreement of the obtained results for extreme normal stresses for various
ratios l/b and c/b, by assuming the ratios l/b are not too small.

By assuming an error R2% with respect to the results of the plane theory of elasticity, the following
constraints for l/b can be drawn, for orthotropic and isotropic materials:

l

b
r2 for 2REx

G
ÿ 2nxR3,

Table 8

Values of c(2/3), at x=0, for Example 3(a): E=210 GPa, n=0.3

l/b (105) FEA Da

1 1.483 1.458 1.7

3/2 1.215 1.213 0.2

2 1.121 1.118 0.3

3 1.054 1.053 0.1

a D � jFEAÿ�105�j
�105� 100.

Table 9

Values of c(2/3), at x=0, for Example 3(b): E=210 GPa, n=0.3

l/b (107) FEA Da

1 2.449 2.181 11

3/2 1.644 1.598 2.8

2 1.362 1.349 1.0

3 1.161 1.151 0.9

a D � jFEAÿ�107�j
�107� 100.
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l

b
r1

6

�
Ex

G
ÿ 2nx ÿ 3

�
� 2 for 3REx

G
ÿ 2nxR9 �118�

for the strip loaded along its longitudinal edgesÐExample 1(a), where the end at x=0 is under the
identical conditions with respect to the solution by the plane theory of elasticity, given by (85) and (86);
the end at x=1 under `average' conditions, given by (91) and (92);

l

b
r3 for 2REx

G
ÿ 2nxR3,

l

b
r1

3

�
Ex

G
ÿ 2nx ÿ 3

�
� 3 for 3REx

G
ÿ 2nxR9 �119�

for the strip loaded along its longitudinal edgesÐExample 1(b), where the end at x=0 is under the
identical conditions with respect to the solution by plane theory of elasticity, given by (85) and (86); the
end at x=1 under `average' conditions, given by (89) and (90).

The constraints (118) and (119) are obtained by using two orthotropic materials (Ex=18 GPa, Ey=17
GPa, G = 1.9 GPa, nx=0.118, and Ex=315 GPa, Ey=210 GPa, G = 80.77 GPa, nx=0.367), and a
linear interpolation, included isotropic materials, as shown in Fig. 6. The constraints (118) are shown in
Fig. 6a, the constraints (119) in Fig. 6b.

By assuming an error R2% with respect to the results of the ®nite element analysis, the following
constraints for l/b are obtained, for isotropic materials:

l

b
r2 �120�

for the strip loaded along its central longitudinal sectionÐExample 2, where the ends are under the
identical conditions with respect to FEA, given by (85) and (86) and (91) and (92), respectively;

l

b
r1 �121�

for the strip loaded along longitudinal sections (j=2/3)ÐExample 3(a), where the end at x=0 is under
the identical conditions with respect to FEA, given by (85) and (86); the end at x=1 under `average'
conditions, given by (91) and (92);

Fig. 6. Constraints to Example 2.

R. Pavazza / International Journal of Solids and Structures 37 (2000) 4353±4375 4373



l

b
r4 �122�

for the strip loaded along longitudinal sections (j=2/3)ÐExample 3(b), where the end at x=0 is under
the identical conditions with respect to FEA, given by (85) and (86); the end at x=1 under `average'
conditions, given by (89) and (90).

As it could be expected, good agreement is obtained, in general, for Case (a); and in some lesser form
for Case (b). For Case (a), namely, the main vector of longitudinal normal stresses at x=1 is obtained
equal to zero, whereby the plane theory of elasticity, as well as by FEA, the longitudinal normal stresses
vanish totally (except in Example 2). For Case (b) the average longitudinal displacement at x=1 is
resulting to zero, whereby the plane theory of elasticity as well as by FEA, the longitudinal
displacements are equal in total to zero. Here, must be noted that for Case (b) the solution at x=1 by
the plane theory of elasticity su�ers from stress singularities. It is assumed that the shear stresses at x=1
are equal to zero and, on the other hand, the shear loads at x=1 are given unequal to zero. This
in¯uence on the end at x=1 can be more signi®cant than the in¯uence of the self-equilibrated forces (of
the longitudinal normal stress) in Case (a).

It may also be noted that better results, in general, are obtained for isotropic materials. Namely, the
introduced assumptions are more realistic in the case of isotropic strips. Therefore, the constraints for
orthotropic strips are given in a somewhat more severe form. Here, must be noted that material
characteristics in the case of structural orthotropy usually are close to the characteristics of the isotropic
materials. (The material Ex=315 GPa, Ey=210 GPa, G = 80.77 GPa, nx=0.367, corresponds to a
typical structural orthotropic strip.)

Finally, the present solutions should be more realistic in the analysis of ¯anges of isolated beams;
especially beams with clamped ends, or consoles. Namely, it is hard to assume that the longitudinal
displacement can be totally restrained at such clamped ends. The assumption that only the average
longitudinal displacement there is equal to zero seems to be more realistic. The exact solutions of the
plane theory of elasticity by polynomials treat this problem in the same way.

In conclusion, the obtained solution for stresses and displacements is simple and analytical. Under
given constraints, it can be used in the analysis of ¯anges of various types of thin-walled beams with
relatively small ¯ange ratios l/b, subjected to bending by uniform vertical loads. It should be useful
especially in the early design stage of structures when many parts of structures are submitted to
optimization processes.
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